
Rotate each shape. Answer as the new coordinates.

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

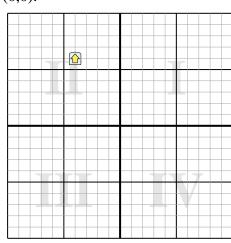
3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

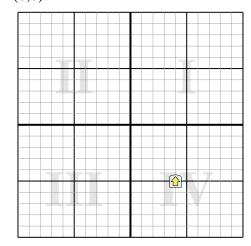
$$x1 = -2.98$$

 $y1 = 2.87$

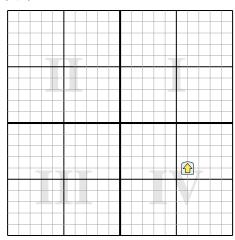
Answers

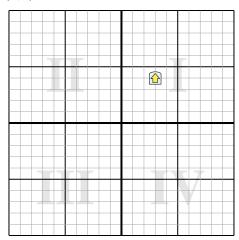

1. _____

2.


3. _____

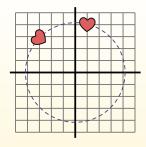
4. _____


1) Rotate the shape 95° around the point (0,0).


2) Rotate the shape 286° around the point (0,0).

3) Rotate the shape -272° around the point (0,0).

4) Rotate the shape -242° around the point (0,0).


Rotate each shape. Answer as the new coordinates.

 θ = Angle of Rotation

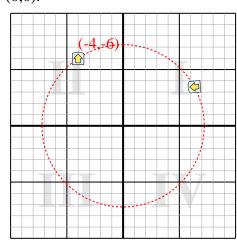
Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

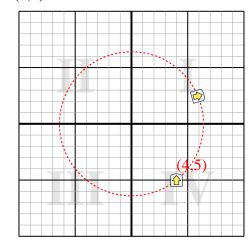
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

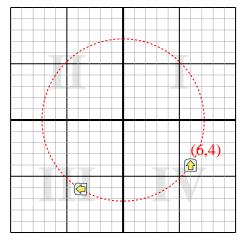
1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

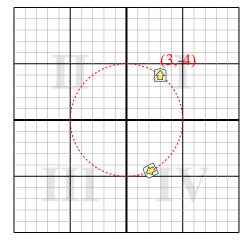

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).


Answers

- 1. **(6.3,3.5)**
- 2. **(5.9,2.5)**
- (-**3.8,-6.1**)
- 4. (2.1,-4.5)


1) Rotate the shape 95° around the point (0,0).


2) Rotate the shape 286° around the point (0,0).

3) Rotate the shape -272° around the point (0,0).

A) Rotate the shape -242° around the point (0,0).

